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Abstract 

A fundamental issue for statistical classification models in a streaming environment is that the joint 
distribution between predictor and response variables changes over time (a phenomenon also known 
as concept drifts), such that their classification performance deteriorates dramatically. In this paper, 
we first present a hierarchical hypothesis testing (HHT) framework that can detect and also adapt to 
various concept drift types (e.g., recurrent or irregular, gradual or abrupt), even in the presence of 
imbalanced data labels. A novel concept drift detector, namely Hierarchical Linear Four Rates (HLFR), 
is implemented under the HHT framework thereafter. By substituting a widely-acknowledged retraining 
scheme with an adaptive training strategy, we further demonstrate that the concept drift adaptation 
capability of HLFR can be significantly boosted. The theoretical analysis on the Type-I and Type-II 
errors of HLFR is also performed. Experiments on both simulated and real-world datasets illustrate that 
our methods outperform state-of-the-art methods in terms of detection precision, detection delay as well 
as the adaptability across different concept drift types. 
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1. Introduction 

With the exponential growth of data, it becomes increasingly challenging to design and 

implement effective techniques for analyzing and detecting changes in a streaming environ- 
ment [2,3] . As a result, early approaches for detecting statistical changes in a time series
(such as change point detectors), have had to be extended for online detection of changes in
multivariate data streams [4] . Some of these techniques for detecting intrinsic changes in the
relationship of the incoming data have been successfully applied to various real-world appli- 
cations, such as email filtering, network traffic analysis and user preference prediction [5,6] . 

Online classification is another common task performed on multivariate streaming data that 
takes advantage of these statistical relationships to predict a class label at each time index [7] .
If the underlying source (or joint data distribution) that generates the data is not stationary,
the optimal decision rule for the classifier would change over time – a phenomena known 

as concept drift [8] . Given the impact of concept drift on the predictive performance of an
online classifier, there is often a need to detect these concept drifts as early as possible. The
inability of change point detectors to detect these concept drifts, has motivated the need for
concept drift detectors that not only monitor the join distribution of a multivariate data stream
but also changes in its relationship to the class labels of the streaming data. 

There are two different approaches to address concept drifts in streaming data [7] . The
first, automatically adapts the parameters of a statistical model in an incremental fashion 

[9–11] or employs an ensemble of classifiers, trained on different windows over the stream,
to give the optimal decision [12–15] . There is no explicit detection of drifts in these methods,
but retraining of new classifiers. The second approach integrates a statistical model and a
concept drift detector, whose purpose is to signal the need for updating the statistical model
once a concept drift is detected. Existing methods in this category monitor the error rate
or an error-driven statistics and make a decision based on the statistical learning theory
[16–19] . Unlike the first approach that only mitigates deteriorating classification performance 
over time, the second approach enables identification of the time instant related to concept 
drift occurrences. The promptness of the alert, i.e. the time that mediates the start of drift
until its detection, is crucially important in applications like malware detection or network 

monitoring [5,6] . 
In this paper, we use the second approach and present a novel hierarchical hypothesis 

testing (HHT) framework for concept drift detection and adaptation. This framework is in- 
spired by the hierarchical architecture that was recently proposed for change point detection 

[20,21] (see Section 2.1 for more discussion on the difference between concept drift detection 

and change point detection). The presented work intends to bring new perspectives to the field
of concept drift detection and adaptation with the recent advances in hierarchical mechanism 

(e.g., [21,22] ) and provides the following contributions. First, we present Hierarchical Linear 
Four Rates (HLFR) detector [1] , a novel HHT-based concept drift detection method, which is
applicable to different types of concept drifts (e.g., recurrent or irregular, gradual or abrupt).
� A short version of this paper, titled “Concept Drift Detection with Hierarchical Hypothesis Test” [1] , was 
presented at the 2017 SIAM International Conference on Data Mining (SDM). 
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 detailed analysis on the Type-I and Type-II errors of the proposed HLFR is also performed.
econd, we present an adaptive training approach instead of the commonly used retraining
trategy, once a drift is confirmed. The motivation is to leverage knowledge from the histor-
cal concept (rather than discard this information as in the retraining strategy), to enhance
he classification performance in the new concept. We term this improvement adaptive HLFR
A-HLFR). Admittedly, leveraging previous knowledge to boost classification performance is
ot novel in the streaming classification scenario. However, to the best of our knowledge,
revious work either uses the first approach that do not explicitly identify timestamps or the
ypes of drifts (e.g., [23–25] ) or relies heavily on previous restored samples (e.g., [22] ) which
ontradicts the single pass criterion 

1 [7,26] . From this perspective, we are among the first
o investigate feasible solutions to perform “knowledge transfer” without losing intrinsic drift
etection capability and the utilization of previous samples. Third, we carry out comprehen-
ive experiments to investigate the benefits of HLFR (in detection) and A-HLFR (in detection
nd adaptation), and validate the advantage of adaptive training strategy. 

The rest of the paper is organized as follows. In Section 2 , we give the problem formula-
ion of concept drift and also briefly review related work. In Section 3 , we present HLFR and
laborate on the layer-I and layer-II tests employed. This section also includes the derivation
f the detailed values of Type-I and Type-II errors associated with HLFR. Additionally, we
resent A-HLFR, that not only detects drifts but also adapts the classifier to handle con-
ept drifts. In Section 4 , experiments are presented and discussed. Finally, we present the
onclusion in Section 5 . 

. Previous approaches 

.1. Problem formulation 

Given a continuous stream of labeled samples { X t , y t }, t = 1 , 2, . . . , a classifier ˆ f can
e learned so that ˆ f ( X t ) �→ y t . Here, X t is a d -dimensional feature vector in a predefined
ector space X = R 

d and y t ∈ { 0, 1 } . 2 At every time instant t , we split the samples into sets
 A (containing n A recent samples) and set S B (containing n B examples that appeared prior to
hose in S A ). A concept drift refers to the joint distribution P t ( X , y ) that generates samples in
 A differs from that in S B [5,8,27] . From a Bayesian perspective, concept drifts can manifest
wo fundamental forms of changes [28] : 1) a change in the posterior probability P t ( y | X ); and
) a change in the marginal probability P t ( X ) or P t ( y ). Existing studies tend to prioritize
etecting posterior distribution change [6] , also known as real concept drift [29] , because it
learly indicates the optimal decision rule. 

A closely related problem to concept drift detection is the classical change point de-
ection that has been well studied theoretically and practically before. Unlike concept drift
etectors, change point detectors are targeted at detecting changes in the generating distri-
ution of the streaming data (i.e., P ( X t )) [30] . The standard change point detection methods
re typically based on statistical decision theory, some reference books include [4,31–33] .
lthough a change point detector may benefit the performance of concept drift detector,
urely modeling P t ( X ) is insufficient to solve the problem of concept drift detection [34] . An
1 Single pass criterion: a sample from the data stream should be discarded rather than stored in the memory, once 
t has been processed [7,26] . 

2 This paper only considers binary classification. 
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Fig. 1. The limitations of change point detector on concept drift detection. (a) and (b) demonstrate the feature (i.e., 
X ) distribution in 2-D plane in two consecutive concepts (selected from the Two Classes Rotating (2CR) dataset 
[36] ), where the “red rectangle” denotes class 1 and the “blue triangle” represents class 2. There is no distribution 
change on P t ( X ) and P t ( y ) (because the labels are balanced). The only factor that evolves over time is P t ( y | X ), the 
optimal decision rule (see the black dashed line). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

intuitive example is shown in Fig. 1 , in which P t ( X ) remains unchanged, while the class labels
change. On the other hand, it still remains a big challenge to detect any type of distributional
changes, especially for multivariate or high-dimensional data [18,30] . For these reasons, in- 
stead of selecting the intermediate solution of change point detection, we solve the problem 

by monitoring the “significant” drift in the prediction risk of the underlying predictor based 

on the risk minimization principle [35] . 

2.2. Benchmarking concept drift detection methods 

An extensive review on learning under concept drifts is beyond the scope of this paper,
and we refer interested readers to some recently published surveys [5,6,27] for some clas-
sical methods and recent progresses. In this section, we only review previous work of most
relevance to the presented method, i.e., concept drift detection approaches. 

The method that renewed attention to this problem was the Drift Detection Method (DDM)
[16] . DDM monitors the sum of overall classification error ( ̂  P 

(t ) 
error ) and its empirical standard

deviation ( ̂  S 

(t ) 
error = 

√ 

ˆ P 

(t ) 
error (1 − ˆ P 

(t ) 
error ) /t ). Despite its simplicity, DDM always fails to detect 

real drift points unless the sum of the Type-I and Type-II errors changes. Early Drift Detection
Method (EDDM) [37] , on the other hand, suggests monitoring the distance between two
consecutive classification errors. EDDM performs better than DDM, especially in the scenario 

of slow gradual changes. However, it requires waiting for a minimum of 30 classification 

errors before calculating the monitoring statistic at each time instant, an impractical condition 

for imbalanced data. A third error based method, i.e., STEPD [38] , applies a test of equal
proportion to compare the classification accuracy in a recent window with the historical 
classification accuracy excluding this recent window. 

Following the early work, a few new methods have been proposed to improve DDM
from different perspectives. Drift Detection Method for Online Class Imbalance (DDM-OCI) 
[17] deals with imbalanced data. Unfortunately, DDM-OCI is prone to trigger lots of false
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ositives due to an inherent weakness in the model: the test statistic used by DDM-OCI
ˆ 
 

( t ) 
t pr is not approximately distributed as N (P 

(t ) 
t pr , 

P (t ) t pr (1 −P (t ) t pr ) 

t ) under the null hypothesis 3 [18] .
erfSim [19] also deals with imbalanced data. Different from DDM-OCI, PerfSim tracks the
osine similarity of four entries associated with confusion matrix to determine an occurrence
f concept drift. However, the threshold used to distinguish concept drift was user-specified.
oreover, PerfSim assumes the data comes in batch-incremental manner [39] which makes

t impractical in real applications, especially when the decisions are required to be made in-
tantly. Other related work includes the Exponentially Weighted Moving Average (EWMA) for
oncept drift detection (ECDD) [7] and the Drift Detection Method based on the Hoeffding’s
nequality (HDDM) [40] . An experimental comparative study is available in [41] . 

.3. Hierarchical architecture on change-point or concept drift detection 

Hierarchical architectures have been extensively studied in the machine learning community
n the last decades. One of the most recent examples is the Deep Predictive Coding Networks
DPCN) [42] , a neural-inspired hierarchical generative model which is effective on modeling
ensory data. 

However, the hierarchical architectures for change point (or concept drift) detection
ere seldom investigated. The first hierarchical change point test (HCDT) was proposed

n [20] based on the Intersection of Confidence Intervals (ICI) rule [43] . It has later been
xtended in a higher perspective by incorporating a general methodology to design HCDT
21] . However, as a change point detector, HCDT has its intrinsic limitations as emphasized
n Section 2.1 . Although it can be modified for concept drift detection by tracking the clas-
ification error with a Bernoulli distribution assumption, a univariate indicator (or statistic)
s insufficient to provide accurate concept drift detection [18] , especially when the classifier
ecomes unstable. Moreover, we already proved that the derived statistics (in Layer-I) are
eometrically weighted sum of Bernoulli random variables [18] , rather than simply following
he Bernoulli distribution in the common sense. 

This work is motivated by [21] . However, in order to make the designed algorithm well
uited for broader classes of concept drift detection (rather than change point detection) with-
ut losing accuracy and proper classifier adaptation, we proposed HLFR, a novel hierarchical
rchitecture (together with two novel testing methods in each layer) for concept drift detection
hat is applicable to different concept drift types and data stream distributions (e.g., balanced
r imbalanced labels). Moreover, we present an adaptive training approach instead of the
etraining scheme commonly employed, once a drift is confirmed. The proposed adaptation
pproach is not limited to a single concept drift type and strictly follows the single pass
riterion that does not need any historical data. Results show that the proposed approach
aptures more information from the data than previous work. 

. Hierarchical Linear Four Rates (HLFR) 

This section presents a novel hierarchical hypothesis testing (HHT) framework for concept
rift detection and adaptation. As shown in Fig. 2 , HHT features two layers of hypothesis
3 ˆ R 

(t ) 
t pr is a modified estimator of P (t ) t pr , which satisfies ˆ R 

(t ) 
t pr = η ˆ R 

(t−1) 
t pr + (1 − η)1 y t = ̂ y t where η denotes a time 

ecaying factor [17] . 
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Fig. 2. The proposed hierarchical hypothesis testing (HHT) framework for concept drift detection and adaptation. 

 

 

 

 

 

 

tests. The Layer-I test is executed online. Once it detects a potential drift, the Layer-II test is
activated to confirm (or deny) the validity of the suspected drift. Depending on the decision
results of Layer-II test, the HHT reconfigures or restarts the Layer-I test correspondingly. 
A new concept drift detector, namely Hierarchical Linear Four Rates (HLFR), is developed 

under the HHT framework. HLFR implements a sequential hypothesis testing [44,45] , and 

the two layers cooperate closely to improve online classification capability jointly. HLFR, is 
summarized in Algorithm 1 . 

Algorithm 1 Hierarchical Linear Four Rates (HLFR). 

Require: Data { X t , y t } ∞ 

t=1 where X t ∈ R 

d , y t ∈ { 0, 1 } ; Initially trained classifier ˆ f (·) . 
Ensure: Concept drift time instants { T cd } . 
1: for t = 1 to ∞ do 

2: Perform Layer-I test. 
3: if (Layer-I detects potential drift point T pot ) then 

4: Perform Layer-II test on T pot 

5: if (Layer-II confirms the validity of T pot ) then 

6: { T cd } ← T pot ; Update ˆ f (·) . 
7: else 
8: Discard T pot ; Restart Layer-I test. 
9: end if 

10: end if 
11: end for 

HLFR does not make use of any intrinsic property or impose any assumption on the
underlying classifier. This modular property enables HLFR to be easily deployed with any 

classifier (support vector machine (SVM), k -nearest neighbors (KNN), etc.). It is worth not-
ing that ensemble of detectors [46,47] may appear to share similarities with the proposed 

HHT framework in this paper. However, the two architectures are significantly different in 

the way to organize different hypothesis tests. For HHT, the Layer-II test is only activated
when the Layer-I test detects a suspected drift points (i.e., the Layer-II is an auxiliary and
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alidation module to Layer-I in the hierarchical architecture), whereas the ensemble of detec-
ors conducts different tests in a parallel manner (i.e., each test is performed independently
nd synchronously with no priority, and the final decision is made by a voting scheme).
o further illustrate the differences, a rigorous investigation of the Type-I and Type-II er-
ors analysis concerning our HHT framework and the ensemble of detectors are illustrated in
ection 3.3 . 

.1. Layer-I Hypothesis Test 

HLFR selects our recently developed Linear Four Rates (LFR) [18] in its Layer-
 test. According to the results shown in [18] , LFR always exhibits promising perfor-
ances in terms of shorter detection delay and higher detection precision, compared with

ther prevalent concept drift detectors. This is not surprising, as LFR monitors four rates
or statistics) associated with a confusion matrix (i.e., the true positive rate ( P tpr ), the
rue negative rate ( P tnr ), the positive predictive value ( P ppv ) and the negative predictive
alue ( P npv )) simultaneously, thus it can sufficiently and precisely make use of the error
nformation. 

The key idea for LFR is straightforward: P tpr , P tnr , P ppv , P npv should remain the same in a
table or stationary concept. Therefore, a significant change of any P � ( � ∈ t pr, t nr, ppv, npv )
ay imply a change in the underlying joint distribution P t ( X , y ) or concept. Specifically, at

ach time instant t , LFR conducts four independent tests with the following null and alternative
ypotheses: 

H 0 : ∀ � , P ( ̂  P 

(t−1) 
� ) = P ( ̂  P 

(t ) 
� ) 

 A : ∃ � , P ( ̂  P 

(t−1) 
� ) 
 = P ( ̂  P 

(t ) 
� ) 

� ∈ { t pr, t nr, ppv, npv} 

he concept is stable if H 0 hypothesis holds and is considered to have a potential drift if H 0

ypothesis is rejected. Intuitively, LFR should be more sensitive to any type of drift, as it
eeps track of four rates simultaneously. By contrast, almost all previous methods use a single
pecific statistic that can only capture partial of the distributional information: DDM, ECDD
nd HDDM use the overall error rate, EDDM relies on the average distance between adjacent
lassification errors, DDM-OCI deals with the minority class recall, STEPD monitors a ratio
f recent accuracy and overall accuracy, whereas PerfSim considers the cosine similarity
oefficient of four entries in confusion matrix. 

The LFR is summarized in Algorithm 2 . During implementation, LFR modifies P 

(t ) 
� with

 

( t ) 
� as employed in [17,48] (see also footnote 3). R 

( t ) 
� is essentially a weighted linear com-

ination of the classifier’s current and previous performances. In [18] , we have proved that
 

( t ) 
� follows a weighted independent and identically distributed ( i . i . d .) Bernoulli distribution.
iven this property, we are able to obtain the “BoundTable” by conducting Monte-Carlo

imulations. Based upon these bound values, LFR considers that a concept drift is likely
o occur when any R 

( t ) 
� succeeds the warning bound (warn.bd), and sets the warning sig-

al ( warn.t ime ← t). If any R 

( t ) 
� reaches the corresponding detection bound (detect.bd), the

oncept drift is affirmed at ( detect . time ← t ). Interested readers can refer to [18] for more
etails. 
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Algorithm 2 Linear Four Rates (Layer-I test). 

Require: Data { (X t , y t ) } ∞ 

t=1 ; Initially trained classifier ˆ f (·) ; Time decaying factors η� ; warn 

significance level δ� ; detect significance level ε� . 
Ensure: Potential concept drift time instants { T pot } . 
1: (R 

( 0) 
� , ˆ P 

(0) 
� ) ← (0. 5 , 0. 5) and confusion matrix C 

(0) ← 

(
1 1 

1 1 

)
; 

2: for t = 1 to ∞ do 

3: ˆ y t ← 

ˆ f (X t ) 

4: C 

(t ) [ ̂  y t ][ y t ] ← C 

(t−1) [ ̂  y t ][ y t ] + 1 

5: while ( � ∈ { t pr, t nr, ppv, npv} ) do 

6: if ( � is influenced by (y t , ˆ y t ) ) then 

7: R 

( t ) 
� ← η� R 

( t−1) 
� + (1 − η� ) 1 { y t = ̂ y t } 

8: else 
9: R 

( t ) 
� ← R 

( t−1) 
� ; 

10: end if 
11: if ( � ∈ { t pr, t nr} ) then 

12: N � ← C 

(t ) [0, 1 { � = t pr} ] + C 

(t ) [1 , 1 { � = t pr} ] 

13: ˆ P 

(t ) 
� ← 

C 

(t ) [ 1 { � = t pr} , 1 { � = t pr} ] 
N � 

14: else 
15: N � ← C 

(t ) [ 1 { � = ppv} , 0] + C 

(t ) [ 1 { � = ppv} , 1] 

16: ˆ P 

(t ) 
� ← 

C 

(t ) [ 1 { � = ppv} , 1 { � = ppv} ] 
N � 

17: end if 
18: warn.bd � ← BoundTable ( ̂  P 

(t ) 
� , η� , δ� , N � ) 

19: detect.bd � ← BoundTable ( ̂  P 

(t ) 
� , η� , ε� , N � ) 

20: end while 
21: if (any R 

(t ) 
� exceeds warn.bd � & warn.time is NULL) then 

22: warn.time ← t 
23: else if (no R 

( t ) 
� exceeds warn.bd � & warn.time is not NULL) then 

24: warn.time ← NULL 

25: end if 
26: if (any R 

(t ) 
� exceeds detect.bd � ) then 

27: detect.time ← t ; 
28: relearn 

ˆ f (·) by { (X t , y t ) } detect.time 
t= warn.time or wait for sufficient instances; 

29: reset R 

( t ) 
� , ˆ P 

(t ) 
� , C 

(t ) as step 1; 
30: { T pot } ← t . 
31: end if 
32: end for 

 

 

3.2. Layer-II hypothesis test 

The four rates are more sensitive metrics that enable LFR to be able to promptly detect
any types of concept drifts. However, the sensitivity of four rates also makes LFR is more
likely to trigger “false positive” detections. The Layer-II test serves to validate detections 
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aised by Layer-I test, thus significantly remove these “false positive” detections. In HLFR,
e use a permutation test (see Algorithm 3 ) in its Layer-II test. Permutation test has been well

lgorithm 3 Permutation Test (Layer-II test). 
equire: Potential drift time instant T pot ; Permutation window size W ; Permutation number

P ; Classification algorithm A ; Significant rate η. 
nsure: decision ( T rue posi t i ve or F alse posi t i ve ?). 

1: S ord ← streaming segment before T pot of length W . 
2: S 

′ 
ord ← streaming segment after T pot of length W . 

3: Train classifier f ord on S ord using A . 
4: Test classifier f ord on S 

′ 
ord to get the zero-one loss ˆ E ord . 

5: for t = 1 to P do 

6: (S i , S 

′ 
i ) ← random split of S org 

⋃ 

S 

′ 
org . 

7: Train classifier f i on S i using A . 
8: Test classifier f i on S 

′ 
i to get the zero-one loss ˆ E i . 

9: end for 
0: if 1+ 

∑ P 
i=1 1 [ ̂  E ord ≤ ˆ E i ] 

1+ P ≤ η then 

1: decision← T pot is T rue posi t i ve . 
2: else 
3: decision← T pot is F alse posi t i ve . 
4: end if 
5: return decision 

tudied theoretically and practically before, it does not require apriori information regarding
he monitored process or the nature of the data [49] . 

Specifically, we partition the streaming observations into two consecutive segments based
n the suspected drift instant T pot provided by the Layer-I test, and employ a new statis-
ical hypothesis test to compare the inherent properties of these two segments to assess a
ossible variations in the joint distribution P t ( X , y ). Then, the general idea behind our de-
igned permutation test is to test whether the prediction average risk (evaluated over the
econd segment using a classifier trained on the first segment) is significantly different from
ts sampling distribution under the null hypothesis (i.e., no drift occurs). Here, we measure
he prediction average risk with zero-one loss. Zero-one loss contains partial information of
he four rates. Intuitively, if no concept drift has occurred, the zero-one loss on the ordered
rain-test split (i.e., ˆ E ord in line 4) should not deviate too much from that of the shuffled splits
i.e., ˆ E i , i = 1 , 2, . . . , P, in line 8), a realization of its sampling distribution under the null
ypothesis [30] . 

.3. Error analysis on hierarchical hypothesis testing 

To further give credence to the success of HHT framework in practical applications, we
resent a theoretical analysis to its associated Type-I and Type-II errors. 

In the problem of concept drift detection, the Type-I error (also known as a “false positive”
ate) refers to the incorrect rejection of a true null hypothesis H 0 (i.e., no drift occurs). By
ontrast, the Type-II error (also known as a “false negative” rate) is incorrectly retaining a
alse null hypothesis when the alternative hypothesis H A is true. On the other hand, for any
single-layer) hypothesis test, the Type-I error α is exactly the selected significance level,
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whereas the Type-II error (denoted with β) is determined by the power of the test and the
power is exactly (1 − β) . 

Let us denote by α1 and β1 the Type-I and Type-II errors of Layer-I test, and α2 and β2 

the Type-I and Type-II errors of Layer-II test. Also, we denote by α and β the overall Type-I
and Type-II errors of HHT framework. 

By definition, the Type-I error α of HHT is given by: 

α = P ( HHT rejects H 0 | H 0 ) 

= P ({ Layer-I rejects H 0 } &{ Layer-II rejects H 0 }| H 0 ) 

= P ( Layer-I rejects H 0 | H 0 ) × P ( Layer-II rejects H 0 | H 0 ) 

= α1 α2 (1) 

where “&” denotes AND logic operator. 
Eq. (1) assumes that the performance of Layer-I test and Layer-II test is independent, 

i.e., the detection results of Layer-I and Layer-II tests will not be mutually influenced when
they are being tested independently. Given that the test statistics and manners are totally
different in Layer-I and Layer-II tests of HLFR, this assumption makes sense. In fact, even
though the performance of Layer-I and Layer-II tests are related to each other, α still satisfies
α ≤max ( α1 , α2 ), which suggests that the HHT framework will not increase the Type-I error
even in the worst case. 

Similarly, the overall Type-II error β is given by: 

β = P ( HHT fails to reject H 0 | H A ) 

= P ( Layer-I fails to reject H 0 | H A ) 

+ P ({ Layer-I rejects H 0 } &{ Layer-II fails to reject H 0 }| H A ) 

= P ( Layer-I fails to reject H 0 | H A ) 

+ P ( Layer-I rejects H 0 | H A ) × P ( Layer-II fails to reject H 0 | H A ) 

= β1 + (1 − β1 ) β2 (2) 

Again, we assume the performance independence of Layer-I and Layer-II tests. However, 
even though this condition is not met, we still have β1 ≤ β ≤ β1 + max (1 − β1 , β2 ) . This is
an unfortunate fact, as it suggests a fundamental limitation of the HHT framework: it may
increase the Type-II error. Given the fact that majority of the current concept drift detectors
have high detection power (i.e., β is small) yet suffer from a relatively high “false positive”
rate, the cost is acceptable. 

As emphasized earlier, a similar architecture to the proposed HHT framework is the en-
semble of detectors [46,47] . The most widely used decision rule for ensemble of detectors
is that, given a pool of candidate detectors, the system determines a drift if any one of the
detectors finds a drift. This way, suppose there are K candidate detectors, the Type-I and
Type-II errors of the ensemble of detectors are given by (assuming pairwise performance 
independence [50] ): 

α = P ( at least one of the ensemble detectors rejects H 0 | H 0 ) 

= 1 − P ( all detectors do not reject H 0 | H 0 ) 

= 1 − P ({ 1 st detector does not reject H 0 } & 
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· · · &{ K th detector does not reject H 0 }| H 0 ) 

= 1 − P (1 st detector does not reject H 0 | H 0 ) ×
· · · × P (K th detector does not reject H 0 | H 0 ) 

= 1 − (1 − α1 )(1 − α2 ) · · · (1 − αK ) (3)

= P ( all detectors fails to reject H 0 | H A ) 

= P (1 st detector fails to reject H 0 | H A ) ×
· · · × P (K th detector fails to reject H 0 | H A ) 

= β1 β2 · · · βK (4)

By referring to Eqs. (1) –(4) , it is easy to find that, although the architecture of HHT and the
nsemble of detectors look similar, their functionalities and mechanisms are totally different.
HT attempts to remove “false positive” detections as much as possible, thus significantly
ecreases the Type-I error. However, HHT may increase the Type-II error at the same time.
he ensemble of detectors, on the other hand, aim to further improve detection power (thus
ecrease the Type-II error) at the cost of increased Type-I error. 4 Given that the prevalent
oncept drift detectors always have high detection power (e.g., LFR and HDDM) yet suffer
rom lots of “false positive” detections, it may not be necessary to naively combine different
etectors in an ensemble manner. This is also the reason why the ensemble of detectors
o not demonstrate any performance gain over single-layer-based drift detectors in a recent
xperimental survey paper [50] . 

Having illustrated the analytical expressions for the overall Type-I and Type-II errors of
he HHT framework (i.e., { α, β}), we now specify the detailed values of Type-I and Type-II
rrors in Layer-I test (i.e., { α1 , β1 }) as well as the Type-I and Type-II errors in Layer-II test
i.e., { α2 , β2 }) of our proposed HLFR algorithm for completeness. We have α = α1 α2 and
= β1 + (1 − β1 ) β2 . 

.3.1. The α1 and β1 of Layer-I test 
The Type-I error α1 of Layer-I test is upper bounded by its detection significance level

i.e., ε� in Algorithm 2 of manuscript). On the other hand, although the test statistics R �

 � ∈ { t pr, t nr, ppv, npv} ) are geometrically weighted sum of Bernoulli random variables under
 stable concept (i.e., H 0 hypothesis) up to time T , i.e., R 

( T ) 
� = (1 − η� ) 

∑ N � 
i=1 η

N � −i 
� I i , where

 I i } N � i=1 
i.i.d. ∼ Bernoul l i(P � ) and P � is the underlying rate, two reasons make it impossible to get

 close-form expression or upper bound for Type-II error β1 of Layer-I test. 

(1) It is hard to obtain the closed-form distribution function of R 

( T ) 
� under H 0 . Although

[51] investigated the closed-form distribution function of R 

( T ) 
� under H 0 for the special

case P � = 0. 5 , it still remains a question for other values of P � . 
(2) The closed-form distribution function of R 

( T ) 
� under H A is unattainable. This is because

R 

( T ) 
� could have arbitrary (or unconstrained) distributions when the concept changes. 

Therefore, this section only empirically investigates the power of Layer-I test using syn-
hetic data to illustrate and reveal its properties. We denote by 

ˆ βR ∗ the power estimate of
4 1 − (1 − α1 )(1 − α2 ) · · · (1 − αK ) ≥ 1 − (1 − αi ) = αi , ( i = 1 , 2, . . . , K). 
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Fig. 3. Heatmap of power estimate ˆ βR ∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

R 

( t ) 
∗ . Suppose the null distribution is at t = M and alternative distribution is at t = M + k,

1 ≤k ≤K , where K is the maximal detection time delay. Then suppose the underlying rate is
drifted from p 

∗ (the first concept) to q 

∗ (the second concept). Fig. 3 is a heatmap of limiting
power estimates on all ( p 

∗ , q 

∗ ) pairs using M = 1000, K = 200. We can see that ˆ βR ∗ is al-
ready close to 1, when p 

∗ and q 

∗ are significantly different. In this case, the Type-II error β1 

reduces to 0, because βR ∗ = 1 − β1 . 

3.3.2. The α2 and β2 of Layer-II test 
Same as the Layer-I test, the Type-I error α2 of the Layer-II test is upper bounded by its

selected significance level (i.e., η in Algorithm 3 of manuscript). Thus, we focus our analysis
on its power. Before that, we give the following two definitions. 

Definition 3.1. [52] An algorithm A has error stability γ n with respect to loss function L if:

∀ Z n ∈ Z 

n , ∀ i ∈ { 1 , 2, . . . , n} , | R D 

(A Z n ) − R D 

(A Z −i 
n 

) | ≤ γn , (5)

where A S refers to a predictor obtained using A trained on set S with cardinality n , Z 

−i 
n is

the set Z n with the sample i removed, and γ n decreases with n . R D 

(h) = E z∼D 

[ L (h, z)] is the
risk of h ∈ H with respect to distribution D , and E denotes expectation. 

Definition 3.2. [30] A stream segment [ t 1 , t 2 ] is said to have ε-permitted variations, if for
some ε> 0, with respect to h ∈ H, if: 

max 

i, j∈ [ t 1 ,t 2 ] 
| R D i (h) − R D j (h) | ≤ ε. (6) 

Given two subsequences with equal length W , the Layer-II test in our HLFR method aims
to determine whether the average prediction risk on ordered train-test split deviates too much 
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rom that of the shuffled splits by testing the following hypothesis: 

H 0 : | R ord − R perm 

| ≤ � 

H A : | R ord − R perm 

| > � + g(ε) 

here R ord = R S ′ ord 
(A S ord ) denotes the risk on ordered train-test split (i.e., S ord and S 

′ 
ord in lines

 and 2 of Algorithm 3 ), whereas R perm 

= E S∼U 2W [ R S ′ (A S )] denotes the risk on shuffled splits
i.e., S and S 

′ in line 6 of Algorithm 3 ) and U 2 W 

refers to the uniform distribution over all
ossible 

(2W 

W 

)
training sets of size W from the two segments of samples, � is a parameter

hat controls the maximum allowable change rate and g ( ε) is a ε-related function that will be
laborated in the following theorem. 

Having illustrated the essence of Layer-II test, given Definitions 3.1 and 3.2 , the following
orollary upper bounded its Type-II error β2 . 

orollary 3.1. For an algorithm with stability γn = O( 1 n ) and any δ ∈ (0, 1), we have that
nder H A , the probability of obtaining a “false negative” detection is bounded as follows: 

 

[| ̂  E ord − ˆ E perm 

| ≤ 

] ≤ η. (7)

Here 
 = 6 W γW 

+ 

√ 

4 log 

(
4 
η

)
/W + � + ε, in which W and η are the permutation window

ize and the significance rate in Algorithm 3 of manuscript, ε refers to the small variation
n Definition 3.2 and � denotes the maximum allowable change rate. ˆ E ord and 

ˆ E perm 

denote
he estimated zero-one loss of ordered train-test split and shuffled splits (see Algorithm 3 for

ore details). For simplicity, we set � = 0 in our Algorithm 3 to avoid introducing extra
yperparameters. Note that, the above corollary is a special example of Theorem 3 in [30] .
nterested readers can refer to the supplementary material of [30] for complete proof. 

.4. Adaptive Hierarchical Linear Four Rates (A-HLFR) 

Although HLFR can be used for streaming data classification with concept drifts (just like
ts DDM [16] , EDDM [37] and STEPD [38] counterparts), naively retraining a new classi-
er after each concept drift detection severely deteriorates its classification performance. This
tems from the fact that once a drift is confirmed, it discards all the (relevant) information
rom previous experience and uses only limited samples from current concept to retrain a
lassifier. A promising solution to avoid such circumstance is to first extract such kind of
elevant knowledge from past experience and then “transfer” this knowledge to the new clas-
ifier [5,25,53] . To this end, Adaptive Hierarchical Linear Four Rates (A-HLFR) is an integral
art of the proposed solution. A-HLFR makes a simple yet strategic modification to HLFR:
eplacing re-training scheme in HLFR framework with an adaptive learning strategy. Specif-
cally, we substitute SVM (this paper selects soft margin SVM as the base classifier due to
ts accuracy and robustness [52] ) with adaptive SVM (A-SVM) [54] once a concept drift
s confirmed. The pseudocode of A-HLFR is the same as Algorithm 1 . The only exception
omes from the layer-I test, where the re-training scheme with standard SVM (line 28 in
lgorithm 2 ) is substituted with A-SVM. 

.4.1. Adaptive SVM – motivations and formulations 
A fundamental difficulty for learning supervised models once a concept drift is confirmed,

s that the training samples from new and previous concepts are drawn from different distribu-
ions. A short detection delay (especially for state-of-the-art concept drift detection methods)
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results in extremely limited training samples from the new concept. These limited training 

samples from the new concept, coupled with the fact that it may be likely that consecutive
concepts are closely related or relevant, inspires the idea of adapting the previous models
with samples from the new concept to boost the concept drift adaptation capability. 

Recall the earlier mentioned problem formulation, we are required to classify samples in 

the new concept, where only a limited number of labeled samples (i.e., a newly observed
primary dataset D = { (X i , y i ) } N i=1 ) are available for updating a classifier. To circumvent the
drawbacks of limited training samples, the auxiliary classifier ˆ f a training on previously 

observed fully-labeled auxiliary dataset D 

a = { (X 

a 
i , y 

a 
i ) } N 

a 

i=1 should also be considered. This
is because the dataset D is sampling from a joint distribution P ( X , y ) that is related to, yet
different from, the joint distribution P 

a ( X , y ) of dataset D 

a in an unknown manner. If we
apply the auxiliary classifier ˆ f a on the primary dataset D , the performance is poor since ˆ f a 

is biased to P ( X , y ). On the other hand, although we can retrain a classifier using samples in
D such that the new classifier is unbiased to P ( X , y ), the classification accuracy may suffers
from high variance due to limited training samples. 

In order to achieve an improved bias-variance tradeoff, we employ adaptive SVM (A- 
SVM), initiated in [54] , to adapt ˆ f a to D . Intuitively, the key idea of A-SVM is to learn an
adaptive classifier ˆ f from 

ˆ f a by regularizing the distance between 

ˆ f and 

ˆ f a , which can be 
formulated as: 

min 

w 

1 
2 ‖ w − w 

a ‖ 2 + C 

N ∑ 

i=1 
ξi 

s.t. ξi ≥ 0 

y i w 

T φ(X i ) ≥ 1 − ξi , ∀ (X i , y i ) ∈ D 

(8) 

where φ represents a feature mapping to project sample X into a high-dimensional space 
or reproducing kernel Hilbert space (for linear SVM, φ(X) = X), w 

a denotes the classifier
parameters estimated from D 

a . Eq. (8) jointly optimizes the  2 distance between w and w 

a as
well as the classification error. The optimization to A-SVM is presented in [54,55] . 

4. Experiments 

This section presents three sets of experiments to demonstrate the superiority of HLFR 

and A-HLFR over the prevalent baseline methods, in terms of concept drifts detection and 

adaptation. Section 4.1 validates the benefits and advantages of HLFR on concept drift de-
tection, using both quantitative metrics and visual evaluation. Section 4.2 uses two real-world 

examples (one for email filtering, another for weather prediction) to illustrate the effective- 
ness and potency of using an adaptive training method to improve the capability of concept
drift adaptation. In Section 4.3 , we empirically demonstrate that (1) the benefits of adaptive
training are not limited to HLFR, i.e., it provides a general solution to classifier adaptation
for all concept drift detectors, like DDM, EDDM, etc.; and (2) the concept drift detection
capability will not be impacted by the adaptive training strategy, i.e., HLFR and A-HLFR can
achieve almost the same concept drift detection precision. Finally, we give a brief analysis to
the computational complexity of all competing methods in Section 4.4 . All the experiments 
mentioned in this work were conducted in MATLAB 2013a on an Intel i5-3337 1.80GHz PC
with 6GB RAM. 
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Table 1 
Summary of properties of selected datasets. 

Data property SEA Checkerboard Hyperplane USENST1 

Gradual No No Yes No 
Abrupt Yes Yes Yes Yes 
Recurrent Yes No Yes Yes 
Imbalance No No Yes No 
High dimensional No No No Yes 
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.1. Concept drift detection with HLFR 

We first compare the performance of HLFR against five state-of-the-art concept drift detec-
ion methods: DDM [16] , EDDM [37] , DDM-OCI [17] , STEPD [38] , as well as the recently
roposed LFR [18] . The parameters used in these methods were taken as recommended by
heir authors: the warning and detection thresholds of DDM (EDDM) are α = 3 ( α = 0. 95 )
nd β = 2 ( β = 0. 90) respectively; the warning and detection significance levels of LFR
STEPD) are δ� = 0. 01 ( w = 0. 05 ) and ε� = 0. 0001 ( d = 0. 01 ) respectively; whereas the pa-
ameters of DDM-OCI vary across different data under testing. For our proposed HLFR,
he significant rate η in Layer-II test is set to 0.05, and P = 1000 permutations were used
hroughout this paper. 

Four benchmark data streams are selected for evaluation, namely “SEA” [16] , “Checker-
oard” [15] , “Rotating hyperplane”, and USENET1 [14] . These datasets include both synthetic
nd real-world data. A comprehensive description to these datasets is introduced in [1] . Drifts
re synthesized in the data, thus controlling ground truth concept drift locations and enabling
recise quantitative analysis. Table 1 summarized drift types and the data properties for each
tream. Obviously, the selected datasets span the gamut of concept drift types. 

Each stream was generated and tested independently for 100 times. The base classifier used
or all competing methods in all streams is a (soft margin) linear SVM with regularization
arameter C = 1 . The only exception comes from USENET1, in which a radial basis function
RBF) kernel SVM with kernel width 1 is selected. Fig. 4 demonstrates the detection results of
ifferent methods averaged over these 100 trails. As can be seen, HLFR and LFR significantly
utperform their competitors in terms of promptly detecting concept drifts with fewer missed
r false detections, regardless of drift types or data properties. By integrating the Layer-II test,
LFR further improves on LFR by effectively reducing even the few false positives triggered
y LFR. 

Quantitative comparison are performed as well. We define a True Positive ( TP ) as a de-
ection within a fixed delay range after a concept drift occurred, a False Negative ( FN ) as

issing a detection within the delay range, and a False Positive ( FP ) as a detection out-
ide this range or an extra detection in the range. For each detector, its detection quality is
hen evaluated by the Recall = T P/ (T P + F N ) and the Precision = T P/ (T P + F P ) values.
he Precision and Recall values with respect to a predefined (largest allowable) detection
elay are demonstrated in Fig. 5 . At the first glance, HLFR, LFR and STEPD can always
chieve higher Precision or Recall values across different ranges. If we look deeper, the
recision values is significantly improved with HLFR while the Recall values of HLFR and
FR are similar (except for Rotating hyperplane dataset). This result corroborates our Type-I
nd Type-II error analysis in Section 3.3 : Layer-II test aims to confirm or deny the validity
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Fig. 4. The histograms of detected concept drift points, generated using different methods, over (a) SEA; (b) Checker- 
board; (c) Rotating hyperplane and (d) USENET1 datasets. In each row, the red bars denote the ground truth locations 
of concept drift points, whereas the blue bars are the histogram of detected points summarized over 100 independent 
trails. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Average detection delay for all competing algorithms. The best performance in each dataset is highlighted in bold. 

Algorithms SEA Checkerboard Hyperplane USENST1 

STEPD 463 57 140 19 
DDM-OCI 844 58 198 26 
EDDM 939 93 166 36 
DDM 1209 69 125 26 
LFR 458 56 127 17 
HLFR 482 55 120 17 

 

 

 

 

 

 

 

 

 

of layer-I detection results, thus it cannot compensate for the errors of missing a detection
made by Layer-I test. In other words, the Type-I error of HLFR should be smaller than that
of LFR theoretically, whereas the Type-II error of HLFR is lower bounded by LFR. In fact,
the relatively lower Recall of HLFR (compared to LFR) suggests that the used Layer-II test
is a little conservative, i.e., it has a small probability to reject true positive detection triggered
by Layer-I test (i.e., LFR). On the other hand, it seems that STEPD has much higher Recall
values on SEA and Rotating hyperplane datasets. However, the result is meaningless. This is
because STEPD triggers significantly more false alarms (as seen in the fifth row of Fig. 4 (a)
and (c)), such that its Precision values on these two datasets are consistently smaller than
0.15. Table 2 summarized the detection delays (ensemble average) for all competing algo- 
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Fig. 5. The Precision and Recall values of different methods over SEA, Checkerboard, Rotating hyperplane and 
USENET1 datasets. In each figure, the X-axis represents the predefined (largest allowable) detection delay, and 
the Y-axis denotes the corresponding metric values. For a specific delay range, a higher Precision or Recall value 
suggests better performance. 
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Table 3 
Parameter settings in spam email filtering. 

Algorithms Parameter settings on significance levels (or thresholds) 

STEPD w = 0. 005 , d = 0. 0003 
EDDM α = 0. 95 , β = 0. 90
DDM α = 3 , β = 2. 5 
LFR δ� = 0. 01 , ε� = 0. 00001 
HLFR δ� = 0. 01 , ε� = 0. 0001 , η = 0. 01 
A-HLFR δ� = 0. 01 , ε� = 0. 0001 , η = 0. 01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rithms. Out of the four datasets, our HLFR has the shortest (average) detection delay in three
of them. 

4.2. Concept drift adaptation with A-HLFR 

In this section, we perform two case studies using representative real-world concept drift 
datasets from email filtering and weather prediction domain respectively, aiming to validate 
the rationale of HLFR on concept drift detection as well as the potency of A-HLFR on
concept drift adaptation. Performance is compared to DDM, EDDM, STEPD as well as LFR.
Note that, the results of DDM-OCI are omitted as it is hard to detect “reasonable” concept
drift points in the selected data. 

The spam filtering dataset [13] , consisting of 9324 instances and 500 attributes, is used
herein. This data represents email messages from the Spam Assassin Collection 

5 and contains 
contains natural concept drifts [13,56] . The spam ratio is approximately 20%. Besides, the
weather dataset [15,53] , a subset of the National Oceanic and Atmospheric Administration 

(NOAA) data, 6 consisting of daily observations recorded in Offutt Air Force Base in Belle-
vue, Nebraska, is also used in the study. This data is collected and recorded over 50 years,
containing not only short-term seasonal changes, but also (possibly) long-term climate trend. 
Daily measurements include temperature, pressure, wind speed, visibility, and a variety of 
features. The task is to predict whether it is going to rain from these features. Minority class
cardinality varied between 10% and 30% throughout these 50 years. 

4.2.1. On parameter tuning and experimental setting 

A common phenomenon for classification of real-world streaming data with concept drifts 
and temporal dependency is that “the more random alarms fire the classifier, the better the
accuracy [57] ”. Thus, to provide a fair comparison, the parameters of all competing methods
are tuned to detect similar number of concept drifts. Tables 3 and 4 summarized the key
parameters regarding significance levels (or thresholds) of different methods in two selected 

real-world datasets respectively. For spam data, an extensive search for appropriate partition 

of training and testing sets was performed based on two criteria. First, there is no strong
autocorrelations in the classification error sequence on the training set. This is because once 
the errors are highly autocorrelated, it is very probably that the training data is no longer i . i . d .
or the training data spans different concepts. Second, the classifier trained on the training set
can achieve promising classification accuracies on both minority and majority classes, i.e., 
5 http:// spamassassin.apache.org/ 
6 ftp:// ftp.ncdc.noaa.gov/ pub/ data/ gsod

http://spamassassin.apache.org/
ftp://ftp.ncdc.noaa.gov/pub/data/gsod
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Table 4 
Parameter settings in weather prediction. 

Algorithms Parameter settings on significance levels (or thresholds) 

STEPD w = 0. 05 , d = 0. 003 
EDDM α = 0. 95 , β = 0. 90
DDM α = 2, β = 1 . 5 
LFR δ� = 0. 01 , ε� = 0. 0001 
HLFR δ� = 0. 01 , ε� = 0. 00001 , η = 0. 3 
A-HLFR δ� = 0. 01 , ε� = 0. 00001 , η = 0. 3 

Fig. 6. Concept drift detection results on the spam dataset. 
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ufficient number of training data is required. With these two considerations, the length of
raining set is set to 600. As for the weather data, the training size is set to 120 instances
days), approximately one season as suggested in [53] . 

.2.2. Case study on spam dataset 
We first evaluate the performances of different methods on the spam dataset. According to

he authors of [13] , there are three dominating concepts distributed in different time periods
nd these concept drifts occurred approximately in the neighbors of time instants 200 and
800 in Region I, time instants 2300 and 6200 in Region II, and time instant 8000 in Region
II. Besides, there are many abrupt drifts in Region II. A possible reason for these abrupt
nd frequent drifts may be batches of outliers or noisy messages. According to the concept
rift detection results shown in Fig. 6 , A-HLFR and HLFR best match these descriptions,
xcept that they both miss a potential drift around time instant 1800. By contrast, although
ther methods are able to detect this point, they have many other limitations: (1) LFR triggers
ome false positive detections as well; and (2) DDM or EDDM, not only misses obvious drift
oints, but also feeds back unconvincing drift locations in Region I or Region III. 

We then applied a recently proposed measurement – Kappa Plus Statistic (KPS) [58] -
o access experimental results. KPS, defined as κ+ = 

p 0 −p ′ e 
1 −p ′ e 

, aims to evaluate a data stream
lassifiers performance, taking into account the temporal dependence and effectiveness of
lassifier adaptation. p 0 is the classifier’s prequential accuracy [59] and p 

′ 
e is the accuracy of
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Fig. 7. Kappa Plus Statistic (KPS) prequential representations. 

 

 

 

 

 

No-Change classifier. 7 We partition the training set into approximately 30 consecutive time 
periods. The KPS prequential representation over these periods is shown in Fig. 7 (a). As can
be seen, the HLFR and A-HLFR adaptations are most effective in periods 1–5, but suffer from
a sudden drop in periods 6–10. These observations corroborate the detection results shown 

in Fig. 6 : HLFR and A-HLFR can accurately detect the first drift point without any false
positives in Region I, but they both missed a target in Region II. On the other hand, there is
almost no performance difference between the classifier update in A-HLFR and HLFR. 

We further employ several different quantitative measurements to have a thorough evalu- 
ation on streaming classification performance. The first measurement is the most commonly 

used overall accuracy (OAC). Although OAC is an important metric, it is inadequate for im-
7 The No-Change classifier is defined as a classifier that predicts the same label as previously observed, i . e ., 
ˆ y t = y t−1 for any observation X t [58] . 



S. Yu, Z. Abraham and H. Wang et al. / Journal of the Franklin Institute 356 (2019) 3187–3215 3207 

Fig. 8. The time series representations of different metrics for all competing algorithms. (a) and (b): the OAC 

representations for spam data and weather data, respectively. (c) and (d): the F-measure representations for spam data 
and weather data, respectively. (e) and (f): the G-mean representations for spam data and weather data, respectively. 

b  

m  

b  

G  

s  

p  
alanced data. Therefore, we include the F-measure 8 [60] and the G-mean 

9 [61] metrics. All
etrics are calculated in each time instant, creating a time series representation that ensem-

les learning curves. Fig. 8 (a)–(c) plot the time series representations of OAC, F-measure and
-mean for all competing methods. As can be seen, A-HLFR and HLFR typically provide a

ignificant improvement in F-measure and G-mean while maintaining good OAC when com-
ared to their DDM, EDDM and LFR counterparts, with A-HLFR performs slightly better
8 F-measure = 2 × ( Precision ×Recall 
Precision + Recall ) . 

9 G-mean = 

√ 

Acc + × Acc −, where Acc + and Acc − denote true positive rate and true negative rate respectively. 
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than HLFR. STEPD seems to demonstrate the best overall classification performance on the 
spam dataset. However, A-HLFR and HLFR provide more accurate (or rational) concept drift 
detections which best match with cluster assignments results in [13] . 

4.2.3. Case study on weather dataset 
We then evaluate the performances of different methods on the weather dataset. Because 

the ground-truth drift point location is not available, we only demonstrate the concept drift
adaptation comparison results. Fig. 7 (b) plots the KPS prequential representations. As can be
seen, A-HLFR performs (or updates) best in majority of time segments. Fig. 8 (d)–(f) plot
the corresponding OAC, F-measure and G-mean time series representations for all competing 

algorithms. Although the no adaptation (i.e., using the initial trained classifier for prequential 
classification without any classifier update) enjoys an overwhelming advantage in OAC com- 
pared to DDM, EDDM, LFR, STEPD, it is however invalid as the corresponding F-measure 
and G-mean tend to be zero as time evolves. This suggests that if no adaptation is adopted,
the initial classifier gradually identifies the remaining data as belonging to the majority class,
i.e., no rain days, which is not realistic. A-HLFR and HLFR achieves close OAC values to the
non-adaptive classifier, however, shows significant improvements on F-measure and G-mean. 
Again, A-HLFR performs slightly better than HLFR. 

From these two real applications, we can summarize some key observations: 

(1) The given data has severe concept drifts, as the classification performance of no adap- 
tation deteriorates dramatically. 

(2) The adaptive training will not affect the performance of concept drift detection, as 
the concept drift detection results given by HLFR and A-HLFR are almost the same
(see Fig. 6 ). This argument is further empirically validated and elucidated in the next
subsection. 

(3) A-HLFR and HLFR consistently produce the best overall performance in terms of OAC, 
F-measure, G-mean and the rationality of drift detected. For real data, A-HLFR only 

performs slightly better than HLFR. This is because the temporal relatedness between 

consecutive concepts in real-world data is weak or the concept changes gradually and 

slowly such that simply transferring previous knowledge to current domain (or con- 
cept) cannot prompt the generalization capacity of new classifier significantly. There- 
fore, adaptive training has great potency, but it deserves more investigations and future 
improvements. 

(4) There is still plenty of room for performance improvement on incremental learning 

under concept drifts in nonstationary environment, as the OAC, F-measure and G-mean 

values are far from optimal. In fact, even with the state-of-the-art methods which only
focus on automatically adapting classifier behavior (or parameters) to stay up-to-date 
with the streaming data dynamics, the OAC can only reach to approximately 90% in
[13,56] for spam data and 80% in [15,53] for weather data, let alone the relatively lower
F-measure and G-mean values. 

(5) The ensemble of classifiers seems to be a promising direction for future work. However, 
most of the existing ensemble learning based methods (e.g., [15,53] ) are developed for
batch-incremental data [39] , which is not suitable for a fully online setting, where the
sample is provided one by one in a sequential manner [5] . 
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Fig. 9. Summary of Precision and Recall over Checkerboard and USENET1 datasets for all competing algorithms 
and their adaptive versions. The X-axis in each figure represents the pre-defined detection delay range, whereas the 
Y-axis denotes the corresponding Precision and Recall values. For a specific delay range, a higher Precision or 
Recall value suggests better performance. 
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.3. Benefits of adaptive learning 

In this section, we demonstrate, via the application of concept drift adaptation on USENET1
nd Checkerboard datasets, that the superiority of adaptive SVM for concept drift adaptation
s not limited to the HLFR framework. To this end, we consider the algorithm performance
f integrating adaptive SVM into DDM, EDDM, DDM-OCI, STEPD as well as LFR frame-
ork. We term this combinations A-DDM, A-EDDM, A-DDM-OCI, A-STEPD and A-LFR,

espectively. 
In Fig. 9 , we plotted the Precision and Recall curves of HLFR, LFR, DDM, EDDM,

DM-OCI, STEPD, A-HLFR, A-LFR, A-DDM, A-EDDM, A-DDM-OCI and A-STEPD on
SENET1 and Checkerboard, respectively. For better visualization, we separate all the com-
eting algorithms into two groups, group I includes HLFR, A-HLFR, LFR, A-LFR, STEPD
nd A-STEPD as they always perform better than their counterparts, while group II con-
ains DDM, A-DDM, EDDM, A-EDDM, DDM-OCI and A-DDM-OCI. In each subfigure,
he dashed line represents the baseline algorithm without adaptive training (e.g., HLFR),
hile the solid line denotes its adaptive version (e.g., A-HLFR). Meanwhile, for each base-

ine algorithm, its adaptive version is marked with the same color for comparison purpose.
bviously, the adaptive training will not affect the performance of concept drift detection. 10
10 Admittedly, there is performance gap for DDM or STEPD, the difference is, however, data-dependent. For 
xample, DDM seems to be better than A-DDM in Checkerboard dataset, but this advantage does not hold in 
SENET1. 
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Fig. 10. The time series representations of different metrics (OAC, F-measure, G-mean) on USENET1 dataset for 
(a) A-HLFR, HLFR; (b) A-LFR, LFR; (c) A-DDM, DDM; (d) A-EDDM, EDDM; (e) A-STEPD, STEPD; and (f) 
A-DDM-OCI, DDM-OCI. The red dashed line denotes mean values for adaptive learning methods, the red shading 
envelop represents 95% confidence interval. The blue solid line denotes mean values for non-adaptive learning 
methods, the blue shading envelop represents 95% confidence interval. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

This is because the drift is determined by keeping track of “significant” changes of classifi-
cation performance, rather than the specific performance measurement itself. 

In Figs. 10 and 11 , we plotted the time series representations of OAC, F-measure and
G-mean on these two datasets over 100 Monte-carlo simulations. The shading enveloping 

each curve in the figures represents 95% percent confidence interval. In each sub-figure, the
red dashed (or blue solid) line represents mean values for drift detection algorithm with
(or without) adaptive training scheme, while the red (or blue) shading envelop represents 
the corresponding confidence intervals. For almost all the competing algorithms their corre- 
sponding adaptive versions achieve much better classification results than the non-adaptive 
counterparts. This performance boost begins from the first concept drift adaptation and grows 
gradually with increasing number of adaptations. As seen, A-HLFR and A-LFR achieves 
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Fig. 11. The time series representations of different metrics (OAC, F-measure, G-mean) on Checkerboard dataset for 
(a) A-HLFR, HLFR; (b) A-LFR, LFR; (c) A-DDM, DDM; (d) A-EDDM, EDDM; (e) A-STEPD, STEPD; and (f) 
A-DDM-OCI, DDM-OCI. The red dashed line denotes mean values for adaptive learning methods, the red shading 
envelop represents 95% confidence interval. The blue solid line denotes mean values for non-adaptive learning 
methods, the blue shading envelop represents 95% confidence interval. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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ore compelling learning performance compared with A-DDM, A-EDDM, A-DDM-OCI and
-STEPD. 11 This also coincides with the quantitative analysis results of concept drift detec-

ion shown in Fig. 9 . These results empirically validate the potential and superiority of using
daptive classifier techniques for concept drift adaptation, instead of the re-training strategy
dopted in previous work. It is also worth noting that the adaptive classifier is not limited to
oft-margin SVM. In fact, adaptive logistic regression [62] , adaptive single-layer perceptron
63] and adaptive decision tree [64] frameworks all have been developed in recent years with
11 The comparable performance of A-DDM on Checkerboard dataset results from more times of adaptations, which 
s however unreasonable as the adaptation alarms are false alarms. 
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the advance of statistical machine learning. We leave investigations of concept drift adaptation 

using other adaptive classifiers as future work. 

4.4. On the computational complexity analysis of concept drift detection 

Having demonstrated the benefits and effectiveness of the HHT framework, this section 

discusses the computational complexity of the aforementioned concept drift detectors, par- 
ticularly the additional computation cost incurred by incorporating the Layer-II test. In fact, 
DDM, EDDM, DDM-OCI, STEPD and LFR have a constant time complexity ( O(1) ) at each
time point, as all of them follow a single-layer-based hypothesis testing framework that mon-
itors one or four error-related statistics [18] . The computational complexity for generating 

bound tables used by LFR or HLFR to determine the corresponding warning and detection 

bounds with respect to different rate values P � is O(M) , where M is the number of Monte-
Carlo simulations used. However, since the bound tables can be computed offline, the time
complexity for looking up the bound table values once ˆ P � is given (see line 18 and 19 of
Algorithm 2 ) remains O(1) . Due to the introduction of Layer-II test, HLFR is more com-
putational expensive than other single-layer-based methods. This is because HLFR requires 
training P classifiers (1000 in this work) for validating the occurrence of a potential concept
drift time point. 12 Suppose the computational complexity of training a new classifier is O(K ) ,

the total computational complexity of HLFR at a suspected time point is O(K P ) � O(1) . 
Despite this limitation, the HHT framework introduces a new perspective to the field 

of concept drift detection, especially considering its overwhelming advantages on detec- 
tion precision and delay of detection. Finally, it should be noted that the P permutations
in Layer-II test can be run in parallel, as the classifier trained are independent across different
permutations. 

5. Conclusions 

This paper proposed a novel concept drift detector, namely Hierarchical Linear Four Rates 
(HLFR), under the hierarchical hypothesis testing (HHT) framework. Unlike previous work, 
HLFR is able to detect all possible variants of concept drifts regardless of data characteristics,
it is also independent of the underlying classifier. Using Adaptive SVM as its base classifier,
HLFR can be easily extended to a concept drift-agnostic framework, i.e., A-HLFR. The 
performance of HLFR and A-HLFR in detecting and adapting to concept drifts are compared 

to state-of-the-art methods using both simulated and real-world datasets that span the gamut 
of concept drift types (recurrent or irregular, gradual or abrupt, etc.) and data distributions
(balanced or imbalanced labels). Experimental results corroborate our theoretically analysis on 

Type-I and Type-II errors of HLFR and also demonstrate that our methods can significantly 

outperform our competitors in terms of earliest detection of concept drift, highest detection 

precision as well as powerful adaptability across different concepts. Two real examples on 

email filtering and weather prediction are finally presented to illustrate effectiveness and great 
potential of our methods. 

In the future, we will extend HLFR and A-HLFR to multi-class classification scenario. 
One possible solution is to use the one-vs-all strategy to convert the N -class classification
12 HLFR has the same computational complexity with LFR if the Layer-I test does not reject the null hypothesis 
at the tested time point. 
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roblem into N binary-class classification problems. Since the four rates associated with each
inary-class classification are still geometrically weighted sum of Bernoulli random variables,
LFR and A-HLFR might be able to be applied straightforwardly. Additionally, we are also

nterested in investigating the performance of more sensitive metrics, from an information
heoretic learning (ITL) perspective [65] , to monitor the streaming environment. Finally, we
ill continue on designing more power tests under HHT framework for industrial-level noisy
ata. 
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